Incremental Majorization-Minimization Optimization with Application to Large-Scale Machine Learning
نویسنده
چکیده
Majorization-minimization algorithms consist of successively minimizing a sequence of upper bounds of the objective function. These upper bounds are tight at the current estimate, and each iteration monotonically drives the objective function downhill. Such a simple principle is widely applicable and has been very popular in various scientific fields, especially in signal processing and statistics. In this paper, we propose an incremental majorization-minimization scheme for minimizing a large sum of continuous functions, a problem of utmost importance in machine learning. We present convergence guarantees for non-convex and convex optimization when the upper bounds approximate the objective up to a smooth error; we call such upper bounds “first-order surrogate functions”. More precisely, we study asymptotic stationary point guarantees for non-convex problems, and for convex ones, we provide convergence rates for the expected objective function value. We apply our scheme to composite optimization and obtain a new incremental proximal gradient algorithm with linear convergence rate for strongly convex functions. In our experiments, we show that our method is competitive with the state of the art for solving largescale machine learning problems such as logistic regression, and we demonstrate its usefulness for sparse estimation with non-convex penalties.
منابع مشابه
Stochastic Majorization-Minimization Algorithms for Large-Scale Optimization
Majorization-minimization algorithms consist of iteratively minimizing a majorizing surrogate of an objective function. Because of its simplicity and its wide applicability, this principle has been very popular in statistics and in signal processing. In this paper, we intend to make this principle scalable. We introduce a stochastic majorization-minimization scheme which is able to deal with la...
متن کاملOn the Global Convergence of Majorization Minimization Algorithms for Nonconvex Optimization Problems
In this paper, we study the global convergence of majorization minimization (MM) algorithms for solving nonconvex regularized optimization problems. MM algorithms have received great attention in machine learning. However, when applied to nonconvex optimization problems, the convergence of MM algorithms is a challenging issue. We introduce theory of the KurdykaLojasiewicz inequality to address ...
متن کاملGeneralized Majorization-Minimization
Non-convex optimization is ubiquitous in machine learning. The MajorizationMinimization (MM) procedure systematically optimizes non-convex functions through an iterative construction and optimization of upper bounds on the objective function. The bound at each iteration is required to touch the objective function at the optimizer of the previous bound. We show that this touching constraint is u...
متن کاملIncremental proximal methods for large scale convex optimization
Abstract We consider the minimization of a sum Pm i=1 fi(x) consisting of a large number of convex component functions fi. For this problem, incremental methods consisting of gradient or subgradient iterations applied to single components have proved very effective. We propose new incremental methods, consisting of proximal iterations applied to single components, as well as combinations of gra...
متن کاملAn Introduction to MM Algorithms for Machine Learning and Statistical
MM (majorization–minimization) algorithms are an increasingly popular tool for solving optimization problems in machine learning and statistical estimation. This article introduces the MM algorithm framework in general and via three popular example applications: Gaussian mixture regressions, multinomial logistic regressions, and support vector machines. Specific algorithms for the three example...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 25 شماره
صفحات -
تاریخ انتشار 2015